Sunday 4 June 2017

Rifleman Radio is indispensable

When the army are on the battlefield, the equipment that they carry and the weight of it is paramount. Most two way radios are one of two things, light and easily breakable, with limited power, meaning limited range or heavy and the opposite to the above, Robust and able to transmit at a lengthy distance. The current development for a 2 channel thats able to receive and transmit voice and data is an interesting concept. This article, that can originally be found here, give you more of the story.

Nearly two years after the award of the Rifleman Radio contract, I made an appeal for new thinking by both the defense acquisition corps and the defense industry that now bears repeating.

Twenty-two months ago, the need for the Rifleman Radio was obvious as it is today. It provides infantry units with a relatively small and lower cost software-defined radio capable of transmitting v oice and data, such as maps, images and texts. The technology that defines this workhorse tactical radio was continuing to mature, resulting in todays Rifleman Radio being far more reliable and capable than the LRIP-ordered radios from even three years ago.

This maturation process was being driven by ongoing investments in radio technology made by the defense industry, including Thales and Harris Corporation, the two companies selected by the Army to build the Rifleman Radio.

At that time, I noted that success in the Defense Department's new Non-Developmental Items or NDI strategy for the Armys HMS program would require three things:



  • People. Bringing the right people together from three key groups for meaningful engagement: those defining the capabilities; those acquiring the capability for the government and industry; and those who have to deliver the capability to the Warfighter.


  • Dialogue. Creat ing ethical opportunities for face-to-face discussions with industry (not RFI dialogues) about the state of technology innovation and what is feasible to provide in a reasonable time and at a reasonable price.


  • Strategy. Building a shared understanding that this new NDI marketplace for tactical radios that requires industry to invest their own money to develop products will be one that delivers greater and greater capabilities over time, in other words, iteratively.




Where are we now?

The Army is currently working to develop requirements for a 2-channel variant of the Rifleman Radio, a significant step in the Riflemans continuing evolution. The fundamental 2-channel communications capability whether handheld or manpack variants represents the future of tactical communications.

Two-channel capabilities for the small-unit leader radio like the Rifleman will meet the Armys evolving tactical communi cations needs, with its ability to receive and transmit voice and data simultaneously, passing data to and from command to the unit.

The 2-channel Rifleman Radio will provide new capabilities without adding weight from extra radios and batteries. In short, it will provide the capability of two radios without burdening troops with lugging around two radios.

Viewed from a technical perspective, however, a 2-channel handheld radio represents an exponential leap in terms of complexity it bears no relationship to the notion of fusing two 1-channel radios together.

Even the 2-channel HMS Manpack represents a tremendous technological leap forward, though it came with fewer space, size, power and weight limitations than the much smaller handheld Rifleman undoubtedly will. In short, the 2-channel Rifleman Radio will be a tall mountain to climb.

The future Rifleman 2-channel

The 2-channel Rifleman is an achievable reality, however, and spea king for Harris, were already well on the way to delivering this capability. The U.S. Special Operations Command (SOF) Tactical Communications (STC) 2-channel handheld radio being developed by Harris for special operations forces is leading the way to this future.

The STC radios are able to operate in the harshest environments and are specially designed to meet rigorous requirements. The STCs are small, lightweight, multiband and multifunction, with multi-mission capability to enable SOF teams to communicate over multiple channels simultaneously.

The Harris STC will provide the ability to receive ISR full-motion video and signals-based threat information. These handheld radios also will have built-in backward interoperability to communicate over legacy networks, and will be upgradable to integrate new capabilities as requirements evolve.

Although the Armys requirements are still coming together, the 2-channel Rifleman most likely will trade fewer features for le ss cost. That said, there are many technical attributes related to the 2-channel capability that are likely to be applied from the Harris STC to the next iteration of the Rifleman.



The important takeaway here is that the Armys continued commitment to evolving tactical communications has led industry to sustain its investment in advancing capabilities and that formula has brought the 2-channel handheld much closer to reality.

Whether it is the STC or 2-channel Rifleman, the coming wave of new communication capabilities are the result of persistent innovations in myriad radio components: chip design, software, battery life, power consumption and antennas, to name a few.

As Ipointed out in January 2015, the development of the Rifleman Radio would represent just the firs t iteration in the Armys modernization of tactical radios a commitment that would deliver even more revolutionary capabilities over the next decade. But this will only happen if the Army maintains its end of the bargain by assuring industry that ongoing investments would be rewarded with purchases of the end products.

If BBP 1.0, 2.0 and 3.0 continue to be nurtured and take root, these radio technology capabilities will continue to evolve with each measured investment making possible continuing progress. Such an active NDI marketplace will ensure industry remains committed to R&D and the beneficiary of this healthy dynamic is the warfighter.

Sunday 14 May 2017

We Have Listed Seven Different Communication Systems You Can Use At Your Venue

There are many instances where people get confused when talking about types of headsets and the associated equipment. In this article, we are going to help you get a clear understanding of the different types of headsets and the associated equipment. With that said, it is important to note that the names that have been given below, are the actual names that need to be used. Without any further ado, lets get started;

In Ear Monitors

Also known as in-ear (or canal) headphones, these devices sit inside the user's ear canal, and they deliver great sound quality; they ensure a controlled and precise sound. They also fill the ear's entrance, thus are very effective at sealing out any unwanted external noise. These devices include a transmitter which is controlled by an audio engineer which then transmits to the belt-pack on the user. The in ear monitors allow freedom of movement and are commonly used by modern pop a rtists. They're very small and allow them to comfortably hear the rest of the band, and also themselves (this is what's known as monitoring or foldback). Apart from artists, these devices are commonly used by audio engineers to hear the mix of the vocals and the stage instrumentation for recording studio mixing and/or live performance.

Two Way Radio Headsets

Two way radio headset is a communication device which can transmit and also receive signals. A two way radio headset allows the user to communicate with other people with similar 2 way radio headsets (and are operating on the same channel or radio frequency). Two way radio headsets are readily available in mobile and also hand held portable configurations. The handheld Two way radio headsets are also known as walkie talkie headsets or handie talkies. One thing to note about two way radio headsets, is that the user can either transmit or receive signals and not both at the same time.

2 Way Radio Covert Pieces

These are quite similar to the 2 way radios, however, they are much more discreet. 2 way radio covert earpieces are usually used by security personnel as they prefer staying discreet. This type of walkie talkie headset is also ideal for the Door supervisors and security staff.

Wired Show Comms



Unlike Two way radios, these type of communication systems allow for both talking and listening even at the same time. These devices have a closed cup design, meaning they fully cover the ear which helps reduce the ambient noise. Wired show comms come in single muff and double muff versions. They get attached to the belt pack controller which is then physically wired to the system. Because of the cabling that's involved in wired show comms, there's less mobility thus are best suited for managers and the static technicians. These specialist communication devices are also commonly used for calling shows.

Wireless Show Comms

These are very similar to the wired Show Comms, only difference is that their belt packs are wireless. The device and the belt pack are compatible which means that the users can freely and comfortably move around, thus are ideal for stage managers, front of house managers, among others. Just like the wired show comms, these devices also allow both talking and listening at the same. With that said, you should know that the wireless show comms are relatively more expensive than the wired show comms. Some of the other applications for these devices include, but not limited to; security personnel, broadcast, marines, theater, and colleges. T hey can also serve as convenient walkie talkie headset for events.

Radio Performer Headset

This is the device that's used by presenters and performers. This device allows for the user's voice to get fed into the sound system where the audience can get to hear them. This device is usually used in conjunction with the radio belt pack system. Most of the devices used today are generally very thin and skin colored which helps reduce visibility when the performer is on stage.

Presenter Talkback

These are the small ear pieces which you see the lead presenters on TV talk shows wearing. This device allows the producer (of that particular TV talkshow or program), to communicate to the lead presenter and update them on the show's progress. This may be done using a system known as in ear monitoring. Alternatively, wireless show comms systems can also be used.

The arrival of 5G, cognitive radio and the future of connectivity

We are very excited about 5G, we have already reported on how the UK emergency services are moving over to a LTE network, and inevitably 5G is the next step for better, faster and more capable communications.  Not planned to be deployed until the next decade, we believe that 5G will allow us to communicate better with our Walkie talkies. The original article can be found here.

With faster and more reliable connections, we look at what the next generation of communications could mean for business

From smart cities to the internet of things (IoT), virtually every aspect of the modern world is becoming closely connected.

The extent to which we rely on our devices and the exchange of information means new systems are needed that not only handle far greater bandwidth, but that are capable of being deployed to cover areas that were previously unreachable.

The potential benefits for business are huge, with faster and more reliable connectivity not only enhancing how firms interact with customers and each other, but also lending itself to greater flexible working among staff.

The arrival of 5G

One development that many industry observers believe could be revolutionary is 5G. Following on from 4G, the fifth-generation mobile network is in its early stages of development and is expected to be rolled out between 2020â€"25.

Any tech that contributes towards the next phase of mobile connectivity is covered by the term 5G. And although there are still no set standards or specifications, the GSMA â€" a trade body that represents global mobile operators â€" has outlined eight key criteria, stipulating minimum requirements for speed, capacity and energy in order for something to be considered 5G.

According to Ofcom, once operational 5G could provide between 10â€"50 Gbps (gigabit per seconds) in download speeds (as compared to the 5â€"12 Gbps of 4G), and although most experts expect it to be at the lower end of the range, that would still mean you could download an HD movie in seconds.

But rather than simply being faster than the current 4G, it will also allow more devices to access the web â€" an essential requirement if the IoT is to take off â€" meaning it could be transformative for business.

Raj Sivalingam, executive director of telecoms for techUK, the trade association for the tech sector, says: “The potential of the IoT, particularly in the enterprise environment, has been hugely debated but its impact is almost certainly still undervalued.

“Mass deployment across sectors will boost efficiency and safety with pre-emptive fault correction; enable automatic r eporting of accidents and allow real-time asset tracking, reducing crime and increasing productivity, to name just a few benefits.”

One potential bottleneck for 5G is spectrum availability â€" or lack of it. Radio frequencies for both 3G and 4G are already overcrowded. The provision of a new bandwidth will require widespread cooperation between operators, manufacturers and governments.

Infrastructure is also an issue, says Sivalingam. “Making the leap to 5G mobile services and getting more fibre into the fixed telecommunications networks will require substantial amounts of investment.

“We need the government and industry stakeholders to work to shift the UK from good levels of connectivity to great levels so that we continue to attract investors and startups, and to foster innovation from within the UK.”

Cognitive radio

One possible solution is cognitive radio. An adaptive radio and network technology, it can sense and respond to its operating environment and automatically tune itself to the best available frequencies, this makes it more reliable in extreme locations where signals are weak, potentially providing dependable, robust connections that are not hampered by interference or geography.

Finland-based KNL Networks has developed a system using the technology that uses short wave radio to transmit internet access to sites in remote locations ranging from oil rigs to polar research stations. KNL Networks CEO Toni Linden says: “We can provide similar connectivity to those from satellites but with a terrestrial radio system. Our radios receive the whole spectrum all the time, so rather than scanning, real-time broadband receiving is going on. Thus we can see and measure everything that’s going on in the spectrum and we can maintain the network connectivity that way.”

< br>
The tech opens up the possibility of providing seamless connectivity anywhere, giving business reliable online access to markets in parts of the world that have otherwise been unreachable. It could also enable media and other companies to broadcast without the need for expensive satellites.

Quantum key distribution

It’s not just data transmission, speeds and connectivity that pose challenges in the future, but the safety of that data too. Cybercrime is ranked alongside terrorism as among the most serious threats to the UK [pdf], and with data now the lifeblood of modern business, securing that data is of paramount concern. One technology that could provide the answer is quantum communications.

Conventional encryption relies on sending a decryption key alongside your secret data. The receiver then uses that key to decode your secret information. But problems arise because hackers can also copy this key and steal your data.

Quantum key distribution (QKD) is different because it encodes this key on light particles called photons, and an underlying principle of quantum mechanics means that a hacker trying to read or copy such a key would automatically alter its state, effectively leaving a hacker fingerprint so the sender and receiver know their information security had been breached.

China recently launched a quantum satellite to further research into this technology, with the hope of developing an uncrackable communications network.

In the UK, the Quantum Communications Hub is part of a national network of four hubs led by the universities of Birmingham, Glasgow, Oxford and York. Director Tim Spiller says: “We are developin g quantum communications technologies along a number of different directions, notably short-range free space QKD, where the transmitter could be in future mobile phones, and chip-to-chip QKD through optical fibre, where the chips could be in future computers and other devices.”

With two thirds of British business falling victim to cybercrime in the past year the need for better encryption is clear.

Several companies currently offer commercial quantum key distribution systems include ID Quantique, MagiQ Technologies, QuintessenceLabs, SeQureNet and Toshiba, although its high cost and limited range means mainly banks and governments are its main users, with mainstream adoption still some way off.

Spiller added: “Certainly it would be desirable to improve the size, weight, power and cost points of current technologies and our work i n the hub and elsewhere is addressing all these factors.”

Paul Lee, head of technology, media, and telecommunications research at Deloitte, highlighted a number of improvements which he expected to see coming down the line, including improved mobile antennae and base stations, as well as improvements to fixed networks such as G.fast that would enable copper cable to operate at much higher speeds.

“As they get steadily faster, new services emerge to exploit these greater speeds, which then requires the deployment of even faster networks. This tail chasing has been going on for decades and won’t stop in 2017.”

It’s all around us but we can’t see it, what exactly is RF Communication

Radio frequency (often abbreviated as, RF), can be described as any frequency within the electromagnetic spectrum with radio wave propagation that lie in the range extending from about 3 kHz to 300 GHz; this includes the frequencies that are used for communications or the radar signals. That said, you should know that RF generally refers to electrical rather than the mechanical oscillations.

RF communication utilizes radio waves rather than wires to exchange signals, and this is where the term "wireless communication," comes from. RF modules generally use frequencies to distinguish the different radio signals, therefore, in order for the RF modules to communicate, they have to be operating on the same exact frequency. That said, you should know that radio frequency is normally measured in units known as hertz (abbreviated as Hz), which represent number of cycles/second when the r adio wave(s) is transmitted. 1 hertz (Hz) equals 1 cycle/second, and 1 megahertz (abbreviated as, MHz) equals 1 million cycles/second.

A radio frequency (RF) signal basically refers to the wireless electromagnetic signal that's utilized as a form of communication, when talking about wireless electronics. As mentioned earlier, radio waves are a type of electromagnetic radiation which have identified radio frequencies which usually range from about 3Hz to 300 GHz. Not every radio wave is the same; they can be small or big, or they can be far apart or close together. On the radio stations we normally listen to, every station uses waves which are on a slightly different frequency from the other stations. Whenever you happen to switch from one radio station to another, your radio picks up and then plays waves of that particular frequency.

Frequency normally refers to the oscillation rate of the radio waves. It can also refer to how close together or far apart the waves are. When the radio waves are too far apart, that is known as low frequency, and when the radio waves are close together, that is known as high frequency. That said, you should know that radio frequency propagation happens at speed of light, and doesn't need any medium (such as air) in order for it to travel. Radio frequency waves occur naturally from lightning, the sun flares, and even from stars which radiate radio frequency waves as the get older. However, people usually communicate with man made radio waves which oscillate at various select frequencies.

The man made radio frequency waves are produced by oscillating current for a certain number of times, and radiating it off the conductor (which is referred to as the antenna), into an empty space (this is the space that's occup ied by air and not the outer space), as electromagnetic radio waves. The RF signals are received and sent using conductors via the phenomenon that's called the skin effect, where radio frequency current latches itself and then flows through the conductors' surface; this effect is actually the basis and the core of radio technology.

The best thing about RF communication, is that it's omnipresent (that is to mean it's all around us). It plays a crucial role in many of the communications systems which we depend on a daily basis, such as fire and police radio systems, TV and radio broadcasts, and satellite communications. Cordless phones, cellphones, Wireless internet (Wi Fi), and Bluetooth also operate in the radio frequency spectrum. In addition to that, there are other appliances outside of the communications field that use RF. They include; microwave ovens, garage door openers, among others. Some wireless devices such as TV remote controls, cordless computer mice, computer k eyboards, and even 2 way radios also operate using RF frequency.

Two way radios are based on the RF frequency and they perform group communication using minimum radio frequency channel resources. This is to mean that if all the users are in the same location or area (most of the time), you will only need a single channel resource in order to talk to them. By using RF, two way radios have the capability of facilitating “one to many” group communication (which is also known as a group call), very efficiently. By efficient, I mean that 1 user can communicate/talk to 1, 5, 10, 100 or even 1000's of users at a go. The two way radio user doesn’t need to keep on repeating the same message if he/she needs to convey to many users.

Sunday 2 April 2017

MIT's new method of radio transmission could one day make wireless VR a reality

VR is the Buzz word for this year, every technology company clambering to get their headset out on to the market. Much of the market needs to catch-up though, the power of home computing needs to improve and removing the inevitable extra cabling and wires that come with current headsets. Luckily this article is about the future technology of VR headsets, see what we can expect as this technology grows.



If you want to use one of today's major VR headsets, whether the Oculus Rift, the HTC Vive, or the PS VR, you have to accept the fact that there will be an illusion-shattering cable that tethers you to the small supercomputer that's powering your virtual world.

But researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may have a solution in MoVr, a wireless virtual reality system. Instead of using Wi-Fi or Bluetooth to transmit data, the research team’s MoVR system uses high-frequency millimeter wave radio to stream data from a computer to a headset wirelessly at dramatically faster speeds than traditional technology.

There have been a variety of approaches to solving this problem already. Smartphone-based headsets such as Google's Daydream View and Samsung's Gear VR allow for untethered VR by simply offloading the computational work directly to a phone inside the headset. Or the entire idea of VR backpacks, which al low for a more mobile VR experience by building a computer that's more easily carried. But there are still a lot of limitations to either of these solutions.

THE MOVR PROTOTYPE SIDESTEPS TETHERED VR ISSUES

Latency is the whole reason a wireless solution hasn't worked so far. VR is especially latency-sensitive, along with the huge bandwidth requirements that VR needs to display the level of high-resolution video required for virtual reality to work. But the MIT team claims that the millimeter wave signals can transmit fast enough to make a wireless VR headset feasible.

The issue with using millimeter wave technology is that the signal needs a direct line of sight, and fares poorly when it encounters any obstacles. MoVR gets around this by working as a programmable mirror that can direct the direction of the signal to the headset even while it’s moving to always make sure the signal is transmitting directly to the headset's receivers.

For now, the MoV R is simply a prototype, with the team hoping to further shrink down the system to allow for multiple wireless headsets in one room without encountering signal interference. But even as a proof-of-concept, it's an interesting perspective on how virtual reality could one day work.

Sunday 19 March 2017

Growth of Global Hearing Amplifiers Market Driven by Increase in the Number of Prevalence of Hearing Impairment Patients in Old and Young Population

We found this article and couldn’t not post this to our blog, it shows how hearing damage is on the upsurge. With cases of hearing loss growing every year, hearing amplifiers and hearing aids sales have consistently increased. There doesn’t seems to be an answer to this rise but as technology improves, answers can come that way.

Hearing loss can occurs when inner ear or nerve is damaged, which may be caused due to diseases, aging, loud noise, and medications. Hearing amplifier is a small part of hearing aid which makes the sound louder. Hearing amplifiers increase the power of signals and then send them to the ear through speakers.

Hearing aid is useful in improving the hearing and speech of patients. An otolaryngologist investigates the cause of the hearin g loss. An audiologist is a hearing health professional who identifies and measures hearing loss and will perform a hearing test to assess the type and degree of hearing loss.

Increase in number of hearing impairment cases coupled with rising costs of hearing aids are expected to drive the growth of the global hearing amplifiers market during the forecast period. Majority of the consumers use hearing amplifiers or personal sound amplification products (PSAPs) as they are considered cheaper alternatives of hearing aids. Hearing amplifiers or PSAPs, are designed to amplify sounds in any recreational environment and are exempt from the Food and Drug Administration (FDA). Hearing amplifiers are sold directly to consumers as electronic devices without the requirement of a physician prescription.

According to National Institute on Deafness and other Communication Disorders (NIDCD), approximately 324,200 cochlear implants have been implanted worldwide. About 15 percent of A mericans (26 million people) between the ages of 20 and 69 have high frequency hearing loss due to exposure to noise at work or during leisure activities. Major driving factors for the growth of the global hearing amplifiers such as an increase in the number of prevalence of hearing impairment patients in old and young population, increasing investment in research and development in ENT field among others.

Based on styles or design types of hearing aid products the global market of hearing amplifiers can be segmented as follows:

-Behind-the-ear (BTE)

-Mini BTE

-In-the-ear (ITE)

-In-the-canal (ITC)

Based on function the global hearing amplifiers market can be segmented as follows:

-Analog hearing aids

-Digital hearing aids

Based on distribution channels the global hearing amplifiers market can be segmented as follows:

-Hospital Pharmacies

-Online Pharmacies

-Independent Pharmacies and Drug stores

Hearing amplifiers market is segmented into five major regions: North America, Europe, Latin America, Asia Pacific, and Middle East & Africa. In 2015, North America lead the global market of hearing amplifiers followed by the Europe in terms of revenue. According to statistics compiled by the National Institute on Deafness and Other Communication Disorders (NIDCD), 37.5 million adults aged 18 and older in America report some form of hearing loss.

According to the National Institute on Deafness and Other Communication Disorders (NIDCD), 28.8 million U.S. adults could benefit from using hearing aids and more than 90 percent of deaf children are born to parents suffering from some kind of hearing disorder. Globally, the hearing amplifiers market is expected to witness a healthy CAGR in terms of revenue during the forecast period.

Latin America, Middle East & Africa and Asia Pacific regions are the emerging markets in the global hearing amplifiers market. Increasing awareness among the various distribution channels as well as consumers in these regions is anticipated to propel global market growth of hearing aids and amplifiers during the forecast period.

The key players in the global market develop hearing amplifiers in analog and digital forms. Some of the top companies in the global hearing amplifiers market are Sound Hawk, Resound, Foshan Vohom Technology Co. Ltd., Sound world solution, Shenzhen LA Lighting Company Limited, Austar Hearing Science and Technology (Xiamen) Co., Ltd., Huizhou Jinghao Electronics Co. Ltd., Ziphearing among others.

Tuesday 7 March 2017

NFL investigating Giants for using two-way radio during game against Cowboys

Apparently using a two way radio during an American football game is frowned upon over in the good old US of A, This article is about a game between the Giants and the Cowboys. During a Game the coaching staff and Quarterback are not allowed to communicate if there is 15 seconds or less on the clock, this rule might have been broken with the use of a walkie talkie.

The NFL is investigating the Giants’ potentially rule-breaking use of a two-way radio during the team’s recent 10-7 win over the Dallas Cowboys.

The use of a two-way radio by a coach during a game is strictly against league rules, according to ESPN.

In the fourth quarter of the Cowboys game, Giants head coach Ben McAdoo was spotted using a walkie-talkie to communicate play calls with Eli Manning after his headset malfunctioned.

In the fourth quarter of the game, Giants head coach Ben McAdoo was spotted using a walkie-talkie to communicate play calls with Eli Manning after his headset malfunctioned.

The Cowboys issued a formal complaint to the league over the radio use, but the NFL’s investigation was already underway by the time Dallas contacted them.

The NFL has a rule against coaches using two-way handheld radios because the league cannot control when both parties are communicating.

A coach using a walkie-talkie makes it harder for the NFL to monitor a league rule that states communication from the sideline to the quarterback must end when 15 seconds are left on the play clock.

With headsets, the NFL has the power to shut off communication at will with a “cutoff switch operator,” ESPN reported.

The Giants had no comment when reached Thursday night.

McAdoo used the walkie talkie in question, however, for about four or five plays on the Giants’ fourth-quarter drive that ended in an Eli Manning interception on a pass intended for Victor Cruz.

McAdoo’s normal equipment malfunctioned and as the Giants worked to fix it, the coach was handed the walkie talkie temporarily because its signal was reaching Manning’s helmet.

As the Giants worked to correct McAdoo’s equipment, Odell Beckham Jr. could be seen running to the sideline to bring plays back to the huddle and Manning was heading over to the sideline, as well.

There is no evidence in reviewing the game film that demonstrates McAdoo was on the walkie talkie for longer than the allowed 15 seconds of communication with his quarterback.

There is also, of course, no evi dence that the Giants gained any advantage even if he was. The drive ended in a turnover and the Giants’ offense stunk most of the night.